Sinopsis
While the intended teaching style relies heavily on the use of MATLAB, the presentation is very different from texts which prepare elaborate M-files and even menu-driven interfaces. One of the reasons why MATLAB is such a great tool is that it does not have a steep learning curve. Students can quickly experiment on their own. Spoon-feeding with our misguided intention would only destroy the incentive to explore and learn on one's own. To counter this pitfall, strong emphasis is placed on what one can accomplish easily with only a few MATLAB statements. MATLAB is introduced as walkthrough tutorials that encourage students to enter commands on their own. As strong advocates of active learning, we do not duplicate MATLAB results. Students, again, are encouraged to execute the commands themselves. In case help is needed, our Web Support, however, has the complete set of MATLAB results and plots. This organization provides a more coherent discourse on how one can make use of different features of MATLAB, not to mention saving significant printing costs. Finally, we can revise the tutorials easily to keep up with the continual upgrade of MATLAB. At this writing, the tutorials are based on MATLAB version 5.3, and the object-oriented functions in the Control Toolbox version 4.2. Simulink version 3.0 is also utilized, but its scope is limited to simulating more complex control systems. As a first course text, the development of models is limited to stirred-tanks, stirred tank heater, and a few other examples that are used extensively and repeatedly throughout the chapters. Our philosophy is one step back in time. The focus is the theory and the building of a foundation that may help to solve other problems. The design is also to be able to launch into the topic of tuning controllers before students may lose interest. The coverage of Laplace transform is not entirely a concession to remedial mathematics. The examples are tuned to illustrate immediately how pole positions may relate to time domain response. Furthermore, students tend to be confused by the many different design methods. As much as I can, especially in the controller design chapters, the same examples are used throughout. The goal is to help a student understand how the same problem can be solved by different techniques.
We have given up the pretense that we can cover controller design and still have time to do all the plots manually. We rely on MATLAB to construct the plots. For example, we take a unique approach to root locus plots. We do not ignore it like some texts do, but we also do not go into the hand sketching details. The same can be said with frequency response analysis. On the whole, we use root locus and Bode plots as computational and pedagogical tools in ways that can help to understand the choice of different controller designs. Exercises that may help such thinking are in the MATLAB tutorials and homework problems.
Finally, I have to thank Costas Pozikidris and Florence Padgett for encouragement and support on this project, Raymond de Callafon for revising the chapters on state space models, and Allan Cruz for proofreading. Last but not least, Henry Lim combed through the manuscript and made numerous insightful comments. His wisdom is sprinkled throughout the text. Web Support (MATLAB outputs of text examples and MATLAB sessions,
Content
- Introduction
- Mathematical Preliminaries
- Dynamic Response
- State Space Representation
- Analysis of PID Control Systems
- Design and Tuning of Single-Loop Control Systems
- Stability of Closed-loop Systems
- Frequency Response Analysis
- Design of State Space Systems
- MATLAB Tutorial Sessions
0 komentar:
Posting Komentar