Home » , » Concepts and Methods in Modern Theoretical ATOMS, MOLECULES, AND CLUSTERS Chemistry Electronic Structure and Reactivity - Vol I

Concepts and Methods in Modern Theoretical ATOMS, MOLECULES, AND CLUSTERS Chemistry Electronic Structure and Reactivity - Vol I


Sinopsis

This collection presents a glimpse of selected topics in theoretical chemistry by leading experts in the field as a tribute to Professor Bidyendu Mohan Deb in celebration of his seventieth birthday.

The research of Professor Deb has always reflected his desire to have an understandingm and rationalization of the observed chemical phenomena as well as to predict new phenomena by developing concepts or performing computations with the help of available theoretical, modeling, or simulation techniques. Formulation of new and more powerful theoretical tools and modeling strategies has always formed an ongoing and integral part of his research activities. Proposing new experiments, guided by theoretical insights, has also constituted a valuable component of his research that has a fairly interdisciplinary flavor, having close interconnections with areas like physics and biology.

The concept of single-particle density has always fascinated him, perhaps starting with his work on force concept in chemistry, where the density is sufficient to obtain Hellmann–Feynman forces on the nuclei in molecules. His two reviews on “Force Concept in Chemistry” and “Role of Single Particle Density in Chemistry,” published in Reviews of Modern Physics, have provided a scholarly exposition of the intricate concepts, inspiring tremendous interest and growth in this field. These have culminated in two edited books. The force concept provided the vehicle to go to new ways of looking at molecular shapes, the HOMO postulate being an example of his imaginative skills. The concept of forces on the nuclei was soon generalized to the concept of stress tensor within the electron cloud in molecules, the role of which in determining chemical binding and stability of molecules was also explored. Various aspects of the density functional theory (DFT) were investigated. The static aspects were soon viewed as only a special case of the corresponding dynamical theory, the so-called quantum fluid dynamics (QFD), which was developed in 3-D space and applied to study collision phenomena, response to external fields, and other related problems.




0 komentar:

Posting Komentar