Home » » Download PDF Introductory Circuit Analysis Tenth Edition by Boylestad

Download PDF Introductory Circuit Analysis Tenth Edition by Boylestad


Sinopsis

The growing sensitivity to the technologies on Wall Street is clear evidence that the electrical/electronics industry is one that will have a sweeping impact on future development in a wide range of areas that affect our life style, general health, and capabilities. Even the arts, initially so determinednot to utilize technological methods, are embracing some of the new, innovative techniques that permit exploration into areas they never thought possible. The newWindows approach to computer simulation has made computer systems much friendlier to the average person, resulting in an expanding market which further stimulates growth in the field. The computer in the home will eventually be as common as the telephone or television. In fact, all three are now being integrated into a single unit. Every facet of our lives seems touched by developments that appear to surface at an ever-increasing rate. For the layperson, the most obvious improvement of recent years has been the reduced size of electrical/ electronicssystems. Televisions are now small enough to be hand-held andhave a battery capability that allows them to be more portable. Computerswith significantmemory capacity are now smaller than this textbook. The size of radios is limited simply by our ability to read the numbers on the face of the dial. Hearing aids are no longer visible, and pacemakers are significantly smaller and more reliable. All the reduction in size is due primarily to a marvelous development of the last few decades—the integrated circuit (IC). First developed in the late 1950s, the IC has now reached a point where cutting 0.18-micrometer lines is commonplace. Theintegrated circuit shown in Fig. 1.1 is the Intel® Pentium® 4 processor, which has 42 million transistors in an area measuring only 0.34 square inches. Intel Corporation recently presented a technical paper describing 0.02-micrometer (20-nanometer) transistors, developed in its silicon research laboratory. These small, ultra-fast transistors will permit placing nearly one billion transistors on a sliver of silicon no larger than a fingernail. Microprocessors built from these transistors will operate at about 20 GHz. It leaves us only towonder about the limits of such development. It is natural to wonder what the limits to growth may be when we consider the changes over the last few decades. Rather than following a steady growth curve that would be somewhat predictable, the industry is subject to surges that revolve around significant developments in the field. Present indications are that the level of miniaturization will continue, but at a more moderate pace. Interest has turned toward increasing the quality and yield levels (percentage of good integrated circuits in the production process).




0 komentar:

Posting Komentar