Home » , , » Download PDF PHYSICAL BIOCHEMISTRY: PRINCIPLES AND APPLICATIONS Second Edition by David Sheehan



This volume describes a range of physical techniques which are now widely used in the study both of biomolecules and of processes in which they are involved. There will be a strong emphasis throughout on biomacromolecules such as proteins and nucleic acids as well as on macromolecular complexes of which they are components (e.g. biological membranes, ribosomes, chromosomes). This is because such chemical entities are particularly crucial to the correct functioning of living cells and present specific analytical problems compared to simpler biomolecules such as monosaccharides or dipeptides. Biophysical techniques, give detailed information offering insights into the structure, dynamics and interactions of biomacromolecules. Life scientists in general and biochemists in particular have devoted much effort during the last century to elucidation of the relationship between structure and function and to understanding how biological processes happen and are controlled. Major progress has been made using chemical and biological techniques which, for example, have contributed to the development of the science of molecular biology. However, in the last decade physical techniques which complement these other approaches have seen major development and these now promise even greater insight into the molecules and processes which allow the living cell to survive. For example, a major focus of life science research currently is the proteome as distinct from the genome. This has emphasized the need to be able to study the highly-individual structures of biomacromolecules such as proteins to understand more fully their particular contribution to the biology of the cell. For the foreseeable future, these techniques are likely to impact to a greater or lesser extent on the activities of most life scientists. This text attempts to survey the main physical techniques and to describe how they can contribute to our knowledge of biological systems and processes.We will set the scene for this by first looking at the particular analytical problems posed by biomolecules.


  1. Chromatography
  2. Spectroscopic Techniques
  3. Mass Spectrometry
  4. Electrophoresis
  5. Three-Dimensional Structure Determination of Macromolecules
  6. Hydrodynamic Methods
  7. Biocalorimetry
  8. Bioinformatics
  9. Proteomics

0 komentar:

Posting Komentar