Home » , , » Download PDF ENVIRONMENTAL BIOLOGY FOR ENGINEERS AND SCIENTISTS by DAVID A. VACCARI

Download PDF ENVIRONMENTAL BIOLOGY FOR ENGINEERS AND SCIENTISTS by DAVID A. VACCARI


Sinopsis

For an environmental scientist, the answer to the question posed in the title of this section is fairly evident. However, for environmental engineers it is worthwhile to consider this in more detail. For example, environmental engineers need to know a broader range of science than does any other kind of engineer. Physics has always been at the core of engineering, and remains so for environmental engineers concerned with advective transport (flow) in the fluid phases of our world. The involvement of environmental engineers with chemistry has increased. Formerly, it was limited to chemical precipitation and acid–base chemistry in water, and relatively simple kinetics. Now it is necessary also to consider the thermodynamics and kinetics of interphase multimedia transport of organics, the complex chain reaction kinetics of atmospheric pollutants or of ozone in water, and the organic reaction sequences of pollutant degradation in groundwater. In a similar way, the role of biology in environmental engineering has burgeoned.

Traditionally, the biology taught to environmental engineers has emphasized microbiology, because of its links to human health through communicable diseases and due to our ability to exploit microorganisms for treatment of pollutants. Often, there is a simple exposure to ecology. However, the ecology that is taught is sometimes limited to nutrient cycles, which themselves are dominated by microorganisms. As occurred with
chemistry, other subspecialties within biology have now become important to environmental engineering. Broadly speaking, there are three main areas: microbiology, ecology, and toxicology. The roles of microbiology are related to health, to biological pollution control, and to the fate of pollutants in the environment. Ecological effects of human activity center on the extinction of species either locally or globally, or to disturbances in the distribution and role of organisms in an ecosystem. Toxicology concerns the direct effect of chemical and physical pollutants on organisms, especially on humans themselves.

This book aims to help students develop their appreciation for, and awareness of, the science of biology as a whole. Admittedly, applied microbiology is often included in many environmental engineering texts, focusing on disease transmission, biodegradation, and related metabolic aspects. However, little if any material is provided on the broader realm of biology in relation to environmental control. Such an approach notably overlooks a considerable number of important matters, including genetics, biochemistry, ecology, epidemiology, toxicology, and risk assessment. This book places this broad range of topics between two covers, which has not been done previously.

There are other factors that should motivate a study of biology in addition to the practical needs of environmental engineers and scientists. The first is the need to understand the living world around us and, most important, our own bodies, so that we can make choices that are healthy for ourselves and for the environment. Another is that we have much to learn from nature. Engineers sometimes find that their best techniques have been anticipated by nature. Examples include the streamlined design of fish and the countercurrent mass-transfer operation of the kidney. An examination of strategies employed by nature has led to the discovery of new techniques that can be exploited in systems having nothing to do with biology. For instance, the mathematical pattern-recognition method called the artificial neural network was inspired by an understanding of brain function. New process control methods are being developed by reverse-engineering biological systems. Furthermore, there may be much that engineers can bring to the study of biological systems. For example, the polymerase chain reaction technique that has so revolutionized genetic engineering was developed by a biologist who was starting to learn about computer programming. He borrowed the concept of iteration to produce two DNA molecules repeatedly from one molecule. Twenty iterations quickly turn one molecule into a million. Engineers can also bring their strengths to the study of biology. Biology once emphasized a qualitative approach called descriptive biology. Today it is very much a quantitative science, using mathematical methods everywhere, from genetics to ecology. Finally, it is hoped that for engineers the study of biology will be a source of fascination, opening a new perspective on the world that will complement other knowledge gained in an engineering education.




Content

  1. Perspectives on Biology
  2. Biology as a Whole
  3. The Substances of Life
  4. The Cell: The Common Denominator of Living Things
  5. Energy and Metabolism
  6. Genetics
  7. The Plants
  8. The Animals
  9. The Human Animal
  10. Microbial Groups
  11. Quantifying Microorganisms and Their Activity
  12. Effect of Microbes on Human Health
  13. Microbial Transformations
  14. Ecology: The Global View of Life
  15. Ecosystems and Applications
  16. Biological Applications for Environmental Control
  17. The Science of Poisons
  18. Fate and Transport of Toxins
  19. Dose–Response Relationships
  20. Field and Laboratory Toxicology
  21. Toxicity of Specific Substances
  22. Applications of Toxicology






0 komentar:

Posting Komentar